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Abstract 

Soil water retention (SWR) at -0.1, -33, -1500, and -150000 kPa matric potentials and available 

water content (AWC) were estimated from information available from 729 horizons of salt-affected 

soils in the Hungarian Detailed Soil Hydrophysical Database. Soil characteristics of the 1:10,000 scale 

Hungarian soil maps were used as input parameters. Ordinal and nominal (categorical) variables: 

texture, organic matter content, calcium carbonate content, soluble salt content, pH, and soil subtype 

classes of the soil map were used to develop a new prediction method based on the CHAID 

classification tree. Results of the model development were compared with results using conventional 

prediction methods (classification tree (CRT) and multiple linear regression (MLR)). Four types of 

pedotransfer rules were established by classification tree methods. The first rule uses continuous-type 

input parameters, the second uses soil taxonomical information in addition, the third and fourth one 

uses categorical-type input parameters. In addition, continuous pedotransfer functions (point 

estimations) were established as well. Results show that the root mean square error (RMSE) of the 

developed method is between 1.25 vol% (-150000 kPa) and 6.40 vol% (-33 kPa). With the mentioned 

available input parameters, for salt-affected soils the prediction reliability is similar with categorical 

and continuous-type information. To predict SWR from categorical-type information the CHAID 

method is advisable. In the case of continuous-type input parameters MLR is suggested, based on this 

study. The established hydropedologic methods can be readily used to prepare available water content 

maps for the topsoil of salt affected soils based on solely soil survey information. 

 

Supplemental materials are available for this article. Go to the publisher’s online edition of Arid Land 

Research and Management to view the free supplemental file. 
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Introduction 

Salt-affected soils always represent a special case when developing pedotransfer functions. This 

particularity originates from the unique physico-chemical properties of salt-affected soils, which has 

also a fundamental influence on soil water characteristics (Várallyay, 2002) and related land 

management options. Literature shows that besides particle size and pore size distribution, chemical 

properties of the soils are also essential to describe the water retention of these soils (Dane and Klute, 

1977; Acharya and Abrol, 1978; Jayawardane and Beattie, 1978; Rajkai, 1988; Lima et al., 1990; 

Chaudhari and Somawanshi, 2000; Groenevelt et al., 2004). Therefore pedotransfer functions 

developed for non salt-affected soils can not be applied for salt-affected ones.  

Estimation of soil water retention characteristics of Hungarian salt-affected soils was carried out 

earlier by Rajkai (1988) on a dataset specific for a small region of Hungary (Hortobágy) also showing 

that the established method is not applicable for salt affected soils from other regions.   

The required data on soil hydrological properties to operate water management models are often 

not available or difficult to measure. Therefore it is attractive to estimate these properties from soil 

information which is available, or easy to produce. Despite its potential to improve predictions, soil 

taxonomic information is not commonly used in hydrophysical models. The importance of soil 

taxonomical information in estimation of soil water retention at different scales was demonstrated by 

Pachepsky et al. (1982). Rawls et al. (2003) found that information on soil taxonomic order is an 

important factor for the estimation of soil water content. In our previous studies (Tóth et al., 2005; 

Tóth et al., 2008) using factor analysis it was also concluded that preliminary grouping based on 

Hungarian soil subtypes can improve the estimation efficiency of SWR.  

In Hungary 1 : 10,000 detailed soil maps are available for more than half of the arable land area 

(Tóth and Máté, 2006). These maps contain information about basic soil properties such as taxonomic 



information, organic matter content, texture, calcium carbonate content, pH, soluble salt content but 

not on hydrological properties.  

The aim of the current study was to investigate whether pedotransfer rules based on the CHAID 

classification tree method using available soil map information (ordinal and nominal soil properties) 

could predict water retention at -0.1, -33, -1500 and -150000 kPa matric potentials and plant available 

water content of salt-affected soils with an accuracy similar to that of pedotransfer functions. Because 

we wanted to make full utilization of our national hydrophysical database we also included prediction 

of SWR at -150000 kPa into our study, despite its smaller importance for agricultural practice and 

environmental management. The measurements of hygroscopic water content (SWR at -150000 kPa) 

were used by soil scientists in the past to predict other soil hydrophysical properties. It is also used to 

fit water retention curve und - as other measurements of SWR under -1500 kPa  - it is also important 

in applied soil mechanics (Vanapalli et al., 1998). 

The importance of this investigation is twofold. On one hand, the currently available estimates of 

water retention of salt affected soils are derived from a limited number of observations, therefore those 

might be biased and may need to be improved. Our study aims to broaden the knowledge base and 

understanding of soil water retention of salt affected soils. On the other hand, no PTFs of salt affected 

soils are available for categorical-type information, which are presented on soil maps and which form 

a basis for amelioration measures in practice.  

We hypothesised that the special water holding capacity characteristics of salt affected soils can be 

expressed through pedotransfer functions. Furthermore, we hypothesized that categorical-type soil 

information carries information for water retention characterisation comparable in their importance to 

continuous-type soil data. In order to test the validity of these hypotheses a series of statistical analysis 

was performed. 

Four pedotransfer rules were developed based on the classification tree method: 

1. Based on measured continuous-type soil properties only. 

2. Based on measured continuous-type soil properties (the same properties as in the first method) 

and also involving taxonomic soil subtype. 



3. Applying a method using similar soil properties to the first two methods (including soil 

subtype) but all classified to categorical-type data using: 

a. regression tree and 

b. CHAID method. 

In addition to the four pedotransfer rules a continuous pedotransfer function was also established 

for the four different matric potentials separately using similar – continuous-type – input parameters as 

used in the first classification tree.  

Plant available water content was predicted and also calculated from the results of the models that 

estimate water retention at -33 and -1500 matric potentials. 

Based on the work of Pachepsky et al. (1996), Børgesen and Schaap (2005) and according to our 

previous experience (Tóth et al., 2005) water retention at a given matric potential can be better 

estimated by point estimation methods than by parametric estimation methods. Since our aim is to use 

the predicted water retention values to prepare maps with the best possible accuracy, therefore we 

developed point estimation methods for the key water contents instead of parametric estimation 

methods. 

 

Materials and methods 

Database 

This study used 729 samples taken from genetic horizons at different depths of  246 soil profiles of 

salt-affected soils. Data was extracted from the Hungarian Detailed Soil Hydrophysical Database 

(Hungarian acronym: MARTHA) (Makó et al., 2010). The MARTHA database contains 7035 samples 

with measured physico-chemical properties and water retention values at all four distinct matric 

potentials: at -0,1, -33, -1500 and -150000 kPa. All samples from profiles of salt affected soils 

(Baranyai, 1989) were selected for the study. (Appendix 1. and 2. in the on-line publication of this 

paper shows the spatial and taxonomic representativity of the samples.) 90 % of the dataset was used 

as training sample (653 soil horizons), 10 % as test sample (76 soil horizons). Salt affected soils of the 

dataset belong to 22 soil subtype units of the Hungarian classification system which cover six WRB 

Reference Soil Groups (WRB, 2006) including Solonetz, Solonchak, Phaeozem, Chernozem, 



Cambisol and Calcisol. Focus of this analysis was on soil classes according to the Hungarian 

taxonomic classification, because these are available on national soil map cartograms. The database 

contains information on both chemical and physical soil properties in continuous-type form. From 

these soil properties use is made of sand (0.05 – 2 mm) (mass %), silt (0.002-0.05 mm) (mass %), clay 

(<0.002 mm) (mass %), organic matter content (mass %), calcium carbonate content (mass %), pHH2O 

and soluble salt content (mass %). The soil analyses were performed in compliance with standard 

methods (particle size distribution: Gee and Bauder, 1986; organic matter content: Tyurin, 1931; 

calcium carbonate content: Nelson, 1982; pHH2O: McLean, 1982; soluble salt content: MSZ, 1978 ). 

The soil water retention values at different matric potentials were measured following a Hungarian 

standard (Várallyay, 1973) by using sand box, kaolinite box and pressure membrane extractor. 

Statistics on basic properties of soil samples in the training and test datasets (Table 1) show the 

variability of the samples. 

One of our aims was to establish a prediction method which can be applied for categorical-type 

(ordinal and nominal) information of soil maps. Therefore the continuous data of our database was 

classified according to classes used on Hungarian soil maps (Baranyai, 1989; for details see Appendix 

3-7 of the on-line publication of this paper). Analyzed soil properties and the number of their 

categories were soil texture (N=7), organic matter content (N=14), calcium carbonate content (N=5), 

pHH2O (N=7) and soluble salt content (N=4).  

The proportion of exchangeable sodium content within the sum of exchangeable cations – on which 

information is available from the detailed soil maps – has a well-known effect on the soil water 

retention capacity (Dane and Klute, 1977; Acharya and Abrol, 1978; Lima et al., 1990; Chaudhari and 

Somawanshi, 2000; Várallyay, 2002). However, no data is available on this soil property in the 

MARTHA database. Therefore sodium content could not be directly considered in the model 

development and therefore was left out from the numerical analysis. However, some Hungarian soil 

taxonomic names provide indirect information on the sodium content (i.e. sodium content of solonetz 

soils exceeds 25% of the total exchangeable cations) and this information was utilized during the 

evaluation of the results. 

 



Statistical methods 

Pedotransfer rules with classification trees 

In the first phase of the model development we used continuous-type variables to predict the soil 

water retention (SWR) at -0.1, -33, -1500 and -150000 kPa matric potentials and plant available water 

content using the Classification and Regression Tree (CRT; SPSS, 2001) method (CRT1). Plant 

available water content (AWC) was calculated as the difference in the amount of water content held at 

-33 kPa and -1500 kPa matric potentials. In the prediction those soil properties are taken into account, 

which are indicated (in their categorical form) on the Hungarian soil maps (Table 1): sand (0.05 – 2 

mm), silt (0.002-0.05 mm), clay (<0.002 mm), organic matter content, calcium carbonate content, 

pHH2O and soluble salt content. In the second step an analysis is done to explore the benefit of adding 

soil taxonomical information to the available continuous-type soil properties, again, using the CRT 

method (CRT2). In the third step CRT (CRT_kat) and the Chi-squared Automatic Interaction 

Detection (CHAID; Kass, 1980) method of the Classification Tree Analysis (SPSS, 2001) were 

applied using categorical information, including soil taxonomical classes as available from the detailed 

Hungarian soil maps. Regression tree method was used to predict soil hydrophysical properties by 

McKenzie and Jacquier (1999), Rawls et al. (2003), Lilly et al. (2008). Contrary to CRT, the CHAID 

method provides multi-way subdivisions. Those classes of predictors which are not significantly 

different regarding their effect on the dependent variable are merged. Variables which do not 

contribute to the final model significantly will be automatically excluded. Most important predictors 

are placed at the highest node level. The F tests are applied to determine the least significantly 

different predictor-pairs. The tree structure also indicates the inter-reliance of independent variables 

throughout the child nodes. In the CRT method, based on the independent variables, possible binary 

splits of the dataset are analysed to increase the homogeneity within the child node (Breiman et al., 

1998). It uses the least squares deviation impurity measures to chose the best split on the independent 

variable and best parameter for the splitting (for more details see Breiman et al. (1998) and IBM 

(2011)). 

In order to determine the minimal number of samples in the nodes of a tree (both CHAID and 

CRT) and avoid overfitting, while having the best overall prediction, an optimization process by 



tenfold cross-validation has been applied based on the guidelines by Breimann et al (1998). First, 

prediction models with different node size settings are established on the training sample (N = 653). 

Then during the tenfold cross-validation, the database is randomly split into ten parts and the 

developed models are tested on those. The tenfold cross-validation was performed ten times. Model 

uncertainties are characterized by a risk estimate using the mean square error (MSE) value (SPSS, 

2001). That model setting was chosen to be considered optimal in which the average MSE value of the 

method was the smallest for the ten times tenfold cross-validated data (Hill and Lewicki, 2006). 

The 0.01, 0.05 and 0.1 significance levels for splitting nodes and subsequent re-merging of nodes 

during pruning were tested. The 0.05 significance level was chosen to be used in this study as it was 

found to result in the best balance between tree size and estimation performance of the model. 

In regression tree models (CRT) input parameters’ contribution in prediction of the SWR can be 

characterized by the variable importance: 

( ) ( )∑
∈
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where M(xm) is the measure of importance of variable xm, ( )tsR m ,~∆  is the relative risk reduction at node t for 

the ms~  surrogate split in the T optimal subtree selected by cross-validation (Breiman et al., 1998). 

The variable importance is computed by the sum of impurity decreases attributed to the variable at 

each node as calculated for the best split (Breiman et al., 1998). In case of the CHAID method the 

developed tree model clearly indicates the hierarchy of the soil properties in the prediction of SWR at 

given matric potential. 

The optimal CRT and CHAID models were applied on the test sample (N = 76) to assess the 

reliability of the developed methods. 

 

Continuous pedotransfer function with multiple linear regression 

Multiple linear regression (MLR) was used to examine the difference in accuracy between 

pedotransfer rules based on the classification tree method (CRT1) and continuous pedotransfer 

functions using the same soil properties in continuous-type form. MLR models with stepwise forward 

technique were established separately for the four SWR at different matric potentials for the training 

dataset (point PTFs). In the current analysis only those soil properties were used as input parameters 



which are available from the Hungarian soil maps - however in their raw, continuous form. 

Transformation is applied on the input parameters analogue to procedures followed by Rajkai (1988), 

Wösten et al. (1999) and Hodnett and Tomasella (2002): variables without transformation and their 

linear, reciprocal, exponential relationships and interactions between sand, silt and clay fractions were 

used in the analysis. Natural logarithm and reciprocal values of calcium carbonate and soluble salt 

contents were not evaluated since the database contained samples with no CaCO3 and soluble salt 

contents. To estimate the plant available water capacity (AWC) the same methods were applied as 

used for the prediction of water retention at distinct matric potentials (CRT1, CRT2, CHAID, MLR).  

The seemingly logical option to test the CHAID method with continuous variables combined with 

the categorical data of soil type was not used. We declined this option because during the performance 

of the CHAID operation continuous variables are classified into distinct categories, with similar 

sample sizes for the categories that have no added value in comparison to CART, if full scientific 

exploitation of physical relationships is not a priority.  

 

Accuracy and reliability analyses of the models 

The developed water retention models were compared using the following indicators: 

I. Accuracy assessment: root mean square error (RMSE) (for details see Appendix 8. of the 

on-line publication of this paper), the cross-validated RMSE value (except for multiple linear 

regression) and Pearson correlation coefficient (SPSS, 2001). 

II. Reliability assessment: RMSE, mean absolute relative error (MARE) (for details see 

Appendix 8. of the on-line publication of this paper) and the Pearson correlation coefficient. 

Average accuracy of the models was assessed on the training sample, average reliability of those 

were evaluated on the test sample. Statistical significance of differences was tested at the 0.05 

significance level. 

 

Results and discussion 

The reliability of the developed prediction methods are shown in Table 2. Based on the RMSE 

values all of the developed methods show good performance during the reliability testing. RMSE 



values of the developed pedotransfer rules are between 1.249 and 6.403 vol% and for continuous 

pedotransfer functions those are between 1.350 and 5.940 vol% depending on the analyzed matric 

potentials. However, the correlations between the predicted and measured values of the models as 

indicated by Pearson coefficient are low (Table 2) especially in the case of AWC and SWR at -0.1 

kPa. The highest correlation (r¼0.837) was observed in the case of the prediction of SWR at �150000 

kPa with the regression tree (CRT2) model. As a result, the studied soil properties’ soil water retention 

of the Hungarian salt-affected soils can be estimated with a reasonable RMSE value but cannot be 

fully explained at -0.1 and -33 kPa matric potentials, due to the well-known lack of information 

regarding the soil structure (Hillel, 1982). Knowledge of bulk density would possibly improve the 

prediction of SWR at �0.1 kPa (Nemes, 2003; Børgesen & Schaap, 2005; Twarakavi et al., 2009), and 

sodicity would possibly improve the estimation of SWR at both matric potentials (Rajkai, 1988), 

however to confirm this hypothesis further analyses are needed. Such information is not available 

from detailed national soil maps; therefore, we left out these analysis from our current study. SWR at -

1500 and -150000 kPa matric potential can be predicted with higher reliability (Table 2) because the 

adsorption forces can be better explained by organic matter content and clay content at low matric 

potential values (Hillel, 1982). Prediction of AWC is usually weaker than that of SWR values 

(Minasny et al., 1999; Lipsius, 2002; Rawls et al., 2003). Lipsius (2002) analyzed eleven different 

methods published in literature to predict AWC. He found that the PTFs overestimated it in case of 

soils having low AWC and underestimated it for soils with high AWC. Minasny et al. (1999) 

described the prediction of AWC by its relationship with clay content. Below 25% clay content the 

AWC increases with increasing clay content and after that point it slowly decreases. 

Although pedotransfer functions developed for certain soils (Rawls et al., 1982; Saxton et al., 1986; 

Rawls et al., 2003; Saxton & Rawls, 2006; Nemes & Rawls, 2006; Al Majou et al., 2007) show that 

soil particle size distribution with or without organic matter content is satisfactory to predict soil water 

retention, our study showed that in case of the Hungarian salt-affected soils, other soil properties are 

needed as well. 

 



Pedotransfer rules  

The summary of the developed regression (CRT1, CRT2) and classification tree (CHAID) 

prediction methods is presented in Table 3. Soil properties included in the models for the prediction of 

SWR at different matric potentials and AWC are shown.  

 

Regression trees (CRT1, CRT2, CRT_kat) 

Continuous-type input parameters at -0.1 and -33 kPa matric potentials sand, and at -1500 and -

150000 kPa clay is the most important variable to predict SWR (Figure 1). In the case of category-type 

independent variables texture is the most important variable in the estimation. In case of having 

information about soil texture (CRT_kat) instead of particle size distribution (CRT2) the importance 

of Hungarian soil subtype increases and becomes the second (at -0.1, -33 and -1500 kPa) or third (at -

150000 kPa) most important input parameter. 

For the prediction of SWR at -0.1 kPa, besides sand, silt and organic matter, pH is also important in 

case of continuous input variables (CRT1 and CRT2). 

In the case of -33 KPa, texture and Hungarian soil subtype has far the highest splitting power 

(CRT_kat). In case of information about particle size distribution (CRT1, CRT2) the importance of 

soil subtype decreases (CRT2) but it is still the fourth most important variable after sand, clay and silt 

content, prior to organic matter content. 

At -1500 kPa Hungarian soil subtype, organic matter content and calcium carbonate content have 

similar importance being more or less equally at the third place in the variable importance ranking – 

after clay and sand content. 

At -150000 kPa calcium carbonate content is the second or third in the variable importance ranking 

depending on the type of input parameters. 

Organic matter content is ranked between third and fifth, among the studied matric potentials and it 

has the highest normalized importance at -0.1 kPa. Importance of soluble salt content is the lowest 

among the studied soil properties.  

 



CHAID classification tree 

In CHAID classification trees soil texture is the first splitting variable (Fig. 2) which divides the 

soils to predict the SWR at all four matric potentials, showing that it is the most important input 

parameter. At the next level the importance of the variable depends on the matric potential and soil 

texture. At -0.1 kPa pH, organic matter content and soluble salt content are at the second level, 

Hungarian soil subtype, calcium-carbonate content and pH are at the third level of the tree (Fig.2). For 

the prediction of SWR at -33 kPa besides soil texture, soil subtype becomes an important as well in 

case of silt or finer textures. At -1500 kPa soils finer than silt are further divided based on calcium 

carbonate content or soil subtype. In addition to soil texture calcium carbonate content was used as 

input variable to determine SWR at -150000 kPa. For the prediction of AWC soil subtype is the first 

splitting variable and texture forms the second level of the classification tree. 

 

Continuous pedotransfer functions (point PTFs) 

Using the stepwise method, models with significant statistical reliability were developed for 

predicting the soil water retention at the different matric potential. Table 4 presents pedotransfer 

functions (MLRs) and their statistical values, respectively. 

Clay, sand and calcium carbonate content are included in the pedotransfer functions to predict 

SWR at all four matric potentials. Organic matter content and pH are important to predict the SWR at 

-0.1 kPa. Soluble salt content is used as input parameter in the model of SWR at -33 kPa.  

 

Comparison of the different methods 

Continuous pedotransfer functions (MLR) established for the studied salt-affected soils provide 

slightly better predictions than regression trees using the same input parameters (CRT1) during 

reliability assessment. The RMSE values of MLRs were lower in every case with a maximum 

difference of 0.4 vol% and Pearson correlation coefficient was generally higher with 10%. However, 

prediction of the SWR considering the soil subtype (CRT2, CRT_kat and CHAID) performed slightly 

better both in terms of accuracy and reliability in case of SWR at -0.1, -33 kPa and calculated AWC 

(Table 2). 



Comparing the CRT2 method with CRT1 at -33 kPa, in case of containing Hungarian soil subtype 

in the model, RMSE decreased by 1.139 vol% and the Pearson correlation coefficient increased by 

26% during the test of reliability (Table 2). Rawls et al. (2003) also analysed the importance of soil 

taxonomical information for the prediction of SWR. They found that including soil taxonomic order 

besides textural information, improves the estimation of SWR at -33 and -1500 kPa. In case of using 

organic carbon as well, additional soil taxonomic information improves less the estimation. 

The mean absolute relative error (MARE) gives information about the relative size of the 

estimation error, which we think is useful especially for scientist working in other disciplines. For the 

comparison of the accuracy of pedotransfer functions developed on different datasets this type of error 

related performance metrics can be useful. 

Using continuous data (CRT2) instead of categorical data (CRT_kat) gave no significantly different 

results in predicting SWR. However for the test sample among all developed methods, the prediction 

based on categorical soil properties and soil subtype (CRT_kat and CHAID) showed the highest 

reliability (Table 2), but the difference between the methods was not significant. The RMSE values of 

models using category-type input parameters varied between 1.249 and 5.163 vol%, the Pearson 

correlation coefficients at the different matric potential were between 0.643 and 0.782. The findings 

that continuous-type input parameters can result in similar estimation reliability as continuous-type 

one is in accordance with the results of Lilly et al. (2008). They showed that for the estimation of soil 

hydraulic conductivity regression trees using field based information (soil horizon, ped size and soil 

texture – category-type variables) gives similar results to regression trees based on information from 

laboratory measurements (particle size distribution, bulk density, organic matter – continuous-type 

variables). There is no significant difference in reliability – based on the mean squared error and 

absolute relative error of the samples – between the regression tree (CRT_kat) and CHAID method at 

any of the studied matric potentials. The biggest difference between the two methods can be observed 

at -0.1 kPa, where the RMSE value of the CHAID method is smaller with 0.27 vol%. However, in 

case of applying exactly the same optimization process in both methods, the structure of the CHAID 

model is simpler than that of regression tree (CRT_kat), having less terminal nodes (Table 3). 



Considering that the reliability of the developed pedotransfer rules and functions are similar, the 

applicability of both methods primarily is based on the type of available soil information and then on 

the purpose of the SWR prediction. In the case of continuous-type input parameters, pedotransfer 

function developed by linear regression is advisable because of its reliability. If the aim is to study the 

relationship between the easily available soil characteristics and SWR, regression tree is more 

favorable. Having categorical (ordinal and nominal) type available information we suggest the use of 

the CHAID method rather than the regression tree if the goal is reliability and also if the interpretation 

of the results are important. 

 

Relationship between SWR and soil characteristics 

Apart from the particle size distribution calcium carbonate, soluble salt content and pH were found 

to be important predicting properties. Although Khodaverdiloo and Homaee (2004), Rajkai (1988) and 

Hodnett and Tomasella (2002) showed that in case of “problematic soils” they are important 

influencing properties of soil water retention, these soil properties are rarely used to predict it. Soluble 

salts have an effect on the structure of the soil which determines the quantity of macropores. It is an 

important influencing variable at the highest matric potentials of the SWR curve where macropores 

have the biggest role in determining soil water retention capacity. Higher salt content ( > 0.25%) 

resulted in lower mean SWR in case of clayey soils at -0.1 kPa (Fig. 2) matric potential. This can be 

explained by the peptisation effect of the salts which leads to the decrease of macropore volume 

especially when the texture of the soil is clayey (Várallyay, 2002; Lima et al., 1990). 

At the lower matric potential range (at -1500 and -150000 kPa) soils with higher calcium carbonate 

content always have lower SWR. At these matric potentials adhesion forces dominate over surface 

tension and the quantity of micropores (<0.2 µm in diameter) and the surface area of the soil particles 

determines the quantity of the retained water content (Moore, 2004). With increasing calcium 

carbonate content the quantity of mineral soil particles decreases in a unit volume (Rajkai personal 

communication, 2011) therefore SWR decreases. When the soil contains calcaric material which is not 

colloidal, but present in crystallized form (e.g. lime concentration), it further lowers the SWR 

(Marshall et al., 1996) even at -0.1 kPa (Fig. 2). 



Hodnett and Tomasella (2002) hypothesized pH being the indicator of the degree of weathering 

which has affect on the clay mineralogy and soil structure. In our study it can be assumed that through 

pH, some indirect information can be obtained about the exchangeable sodium content and the 

structure of the soil which influences the soil water retention. High pH might be caused by higher 

sodium content, which increases the amount of water that can be hold by the soil in the lower matric 

potential range, probably due to the greater adhesion forces of sodium rich earth fraction and changes 

of pore size distribution. High sodium saturation increases hydration and dispersion of soil colloids, 

therefore micropore volume increases, which increases water retention at -1500 kPa and lower matric 

potentials (Várallyay, 2002) where particle surface properties dominate over capillary forces. At -0.1 

kPa pH higher than 9 might indicate less favourable hard blocky structure with low gravitational pore 

volume, which decreases the SWR near saturation (Fig. 2). 

Introducing soil taxonomical information into the pedotransfer rules can improve both their 

estimation accuracy and reliability, especially at -33, -1500 kPa and AWC (Table 2) as it was 

discussed above. The name of the soil - independently from the type of soil taxonomy - always 

contains important complex information about the soil physical, hydrological, chemical and biological 

properties. In contrast to pedotransfer functions, classification methods like CHAID can handle such 

valuable information too. 

The importance of organic matter content is mainly due to its effect on bulk density which is 

important in the high matric potential range. Organic matter content determines the extent of the 

organic colloid surface (Rajkai, 1988) and has effect on the structure and the adsorptive properties of 

the soil (Rawls et al., 2003; Lal and Shukla, 2004). Higher organic matter content results in higher 

water retention (Fig. 2) except for a few samples which must be further investigated. 

 

Conclusions 

The prediction method by the classification tree based on categorical data (CHAID) gives similar 

results compared to that of prediction methods based on continuous variables. Based on the 

categorical-type soil information available from Hungarian detailed soil maps SWR at -0.1, -33, -1500 

and -150000 kPa could be predicted with reasonable RMSE values for the test sample. The developed 



pedotransfer rules are readily applicable to predict the SWR based on the available large scale 

Hungarian soil maps which contain these categorical-type information. The classification tree methods 

(regression tree and CHAID) were found to be helpful to model the complex relationship between soil 

water retention and other soil properties of salt affected soils. However, if continuous input parameters 

are available, for practical applications we suggest using multiple linear regressions, because they need 

less computation time and provide similar reliability as the regression trees. If the available 

information is category-type (nominal and=or ordinal), the CHAID method results in a simpler 

prediction model than regression tree does. 

Analyses using both the classification trees and the multiple linear regression method showed that, 

in addition to soil texture and organic matter content, soil pH and calcium carbonate content influence 

the water retention of salt-affected soils considerably. In our study, soil genetic information (expressed 

through taxonomic classes) improved the prediction reliability of the SWR the most at -33 kPa (RMSE 

reduced by 1.139 vol%, r increased by 26%); however, the difference was not significant. 

Nevertheless, this information may be utilized in the hydropedological assessment of salt affected 

soils. 
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Fig. 1. Variable importance – also in normalized form (%) – calculated for each input parameters to predict SWR 
at -0.1, -33, -1500 and -150000 kPa matric potential with regression tree methods (CRT1, CRT2, CRT_kat). 
Description of the input variables: clay (<0.002 mm) (mass %), silt (0.002-0.05 mm) (mass %), sand (0.05 – 2 
mm) (mass %), OM: organic matter (mass %), calcium carbonate content (mass %), pHH2O, soluble salt content 
(mass %). Intervals of the soil properties’ codes and list of the studied salt-affected Hungarian soil subtypes can 
be seen in the appendices (App. 2-7.) of the on-line publication of this paper. 
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Fig. 2. Tree diagram resulting from the CHAID classification tree method to predict SWR at -0.1 kPa. Intervals of the soil properties’ codes and meaning of soil subtype codes can be seen in 
the appendixes (App. 2-7.). Round bracket means that the subsequent category is not part of the group, category having a squared bracket behind its name is part of the group. 
 



Table 1. Descriptive statistic of the training and test datasets. 
Soil parameters Type of dataset N Minimum Maximum Mean SDa  
Clay content (<0.002 mm) (mass %) training 653 2.1 67.8 32.4 14.4  
 test 76 2.9 60.7 31.6 13.1  

Silt content (0.002-0.05 mm) (mass %) training 653 1.1 74.4 43.4 14.1  
 test 76 6.9 74.4 42.7 14.5  

Sand content (0.05 – 2 mm) (mass %) training 653 0.3 95.8 24.3 20.4  
 test 76 1.4 90.2 25.7 21.0  

Organic matter content (mass %) training 653 0.1 4.7 1.6 1.2  
 test 76 0.1 4.2 1.6 1.1  

Calcium carbonate content (mass %) training 653 0.0 80.0 15.6 13.6  
 test 76 0.0 63.0 16.6 12.6  

pHH2O training 653 6.2 10.6 8.6 0.8  
 test 76 7.4 10.4 8.6 0.7  

Soluble salt content (mass %) training 639 0.0 1.2 0.1 0.2  
 test 75 0.0 0.5 0.1 0.1  

Soil water content at -0.1 kpa (vol %) training 653 26.4 75.6 46.9 6.1  
 test 76 33.5 60.3 46.4 5.5  

Soil water content at -33 kpa (vol %) training 653 4.6 63.7 33.1 8.1  
 test 76 14.6 53.1 33.6 7.6  

Soil water content at -1500 kpa (vol %) training 653 0.4 37.5 19.7 7.1  
 test 76 2.5 38.0 20.8 7.5  

Soil water content at -150000 kpa (vol %) training 653 0.2 9.9 3.7 2.2  
 test 76 0.3 8.1 3.7 2.0  
aStandard deviation 



  
Table 2. Reliability of the estimation of the soil water retention with CRT (regression tree), CHAID 
classification tree method and multiple linear regression (MLR) at -0.1, -33, -1500 and -150000 kPa matric 
potential, in case of categorical and continuous independent variables. 

Method Predicted soil 
water content 

 Test dataset 
 RMSE 

(vol%) 
MARE 

(%) 
Pearson 

correlation 
coefficient 

Number 
of 

samples  
CRT1 
(continuous 
soil 
properties) 

θ-0.1kPa  4.690 8.34 0.541** 76 
θ-33kPa  6.403 14.73 0.578** 76 
θ-1500kPa  5.433 19.99 0.711** 76 
θ-150000kPa  1.369 34.34 0.730** 76 
AWC predicted  4.503 38.51 0.186 76 
AWC calculatedb  4.826 37.65 0.284** 76 

CRT2 
(continuous 
soil 
properties + 
soil subtype) 

θ-0.1kPa  4.767 8.41 0.522** 76 
θ-33kPa  5.264 11.82 0.731** 76 
θ-1500kPa  5.266 21.65 0.719** 76 
θ-150000kPa  1.509 36.94 0.671** 76 
AWC predicted  4.442 34.79 0.236* 76 
AWC calculatedb  4.604 33.66 0.427** 76 

CRT_kat 
(categorical 
soil 
properties + 
soil subtype 
input) 

θ-0.1kPa  4.488 7.61 0.588** 76 
θ-33kPa  4.935 11.81 0.772** 76 
θ-1500kPa  5.117 22.90 0.738** 76 
θ-150000kPa  1.249 29.32 0.787** 76 
AWC predicted  4.327 35.19 0.228* 76 
AWC calculatedb  4.734 37.46 0.181 76 

CHAID 
(categorical 
soil 
properties + 
soil subtype 
input) 

θ-0.1kPa  4.222 7.10 0.643** 76 
θ-33kPa  5.040 12.33 0.760** 76 
θ-1500kPa  5.163 23.37 0.740** 76 
θ-150000kPa  1.265 31.03 0.782** 76 
AWC predicted  4.493 36.03 0.091 76 
AWC calculatedb  4.580 37.42 0.185 76 

MLR 
(continuous 
soil 
properties) 

θ-0.1kPa  4.684 7.56 0.531** 76 
θ-33kPa  5.940 14.32 0.641** 75c 
θ-1500kPa  5.274 23.43 0.737** 76 
θ-150000kPa  1.350 29.25 0.764** 76 
AWC predicted  4.056 35.27 0.368** 75c 
AWC calculatedb  4.402 37.74 0.211 75c 

*Correlation is significant at 0.05 level. 
** Correlation is significant at 0.01 level. 
aAverage RMSE of the 10 times tenfold crossvalidated test samples. 
bThe plant available water content calculated from predicted SWR values 
cIn case of SWR at -33 kPa and AWC predicted the PTF was worked out for 639 and tested on 75 samples since 
the soluble salt content of the soil was included as input variable in the multiple linear regression and those 
samples had measured soluble salt content information. 



Table 3. Summary of pedotransfer rules developed by regression tree (CRT) and CHAID classification tree 
methods. 
Type of 
prediction 

Predicted 
SWR 

Soil properties which split the data in CRT and CHAID 
models 

Number of 
terminal nodes 

CRT1 -0.1 kPa Organic matter, silt, sand, soluble salt, calcium carbonate 
content, pHH2O  

10 

 -33 kPa Sand, clay, calcium carbonate, silt content 10 
 -1500 kPa Clay, sand, calcium carbonate, silt, organic matter content 12 
 -150000 kPa Clay, organic matter, calcium carbonate, silt, sand content, 

pHH2O 
11 

 AWC Silt content, pHH2O, organic matter, clay content 7 
CRT2 -0.1 kPa Organic matter, silt content, soil subtype, soluble salt 

content 
8 

 -33 kPa Sand content, soil subtype, pHH2O, clay, calcium carbonate, 
silt content 

14 

 -1500 kPa Clay, sand content, soil subtype, calcium carbonate, organic 
matter content 

12 

 -150000 kPa Clay, organic matter, calcium carbonate content, soil 
subtype, silt, soluble salt, sand content 

16 

 AWC Soil subtype, soluble salt, silt, sand, organic matter, clay 
content 

9 

CRT_kat -0.1 kPa Texture, soil subtype, pHH2O, organic matter, calcium 
carbonate content code 

15 

 -33 kPa Texture, soil subtype, pHH2O, organic matter content code 13 
 -1500 kPa Texture, soil subtype, organic matter, calcium carbonate 

content, soluble salt content, pHH2O code 
22 

 -150000 kPa Texture, soil subtype, organic matter, calcium carbonate 
content code 

20 

 AWC Soil subtype, pHH2O, organic matter content, texture code 7 
CHAID -0.1 kPa Texture, pHH2O, organic matter, soluble salt content, soil 

subtype, calcium carbonate content code 
11 

 -33 kPa Texture, soil subtype code 10 
 -1500 kPa Texture, calcium carbonate content, soil subtype code 9 
 -150000 kPa Texture, calcium carbonate content code 11 
 AWC Soil subtype, texture code 5 
CHAID, CRT_kat: classification tree with category type independent variables and Hungarian soil subtype. The 
intervals of the soil properties’ categories can be found in the appendixes (App. 1-5.). CRT1: regression tree 
based on soil properties similar to the input variables of the first prediction method (CHAID) but in continuous 
form and without Hungarian soil subtype: clay (<0.002 mm) (mass %), silt (0.002-0.05 mm) (mass %), sand 
(0.05 – 2 mm) (mass %), organic matter (mass %), calcium carbonate (mass %), pHH2O, soluble salt content 
(mass %). CRT2: regression tree with the input parameters of the CRT1 method and the Hungarian soil subtype.  
 



Table 4. Continuous pedotransfer functions to predict soil water content at -0.1, -33, -1500 and -150000 kPa matric potentials and plant available water content (with 
statistical significance). 
 

Pedotransfer function based on multiple linear regression models Significance of the model predictions 
F p Adjusted R2 

( )
22

3

12
1.0

001.0005.0001.0
410.12057.24753.0ln103.1319.0559.11

siltsiltclayCaCO
pHclaypHOMsand

⋅−⋅⋅−⋅−

⋅+⋅+⋅−⋅+⋅−=Θ −
−  F8,630 = 39.601 p < 0.0005 0.326 

saltsiltclayCaCOclaysand ⋅+⋅⋅−⋅−⋅+⋅−=Θ− 401.4005.0002.0003.0302.0479.44 2
3

2
33  F5,633 = 102.293 p < 0.0005 0.443 

)ln(513.2001.0002.0346.0738.18 22
31500 claysandCaCOclay ⋅−⋅−⋅−⋅+=Θ−  F4,634 = 179.892 p < 0.0005 0.529 

sandclaysandsandCaCOclay ⋅⋅−⋅−⋅−⋅−⋅+=Θ −
− 001.0875.0011.0049.0081.0539.2 1

3150000  F5,633 = 193.896 p < 0.0005 0.602 
22 109.4077.0)ln(352.1080.0584.15 saltpHOMsiltAWC ⋅+⋅−⋅−⋅+=  F4,634 = 13.453 p < 0.0005 0.078 

Input variables correspond to soil properties available from soil maps. Description of the input variables: clay (<0.002 mm) (mass %), silt (0.002-0.05 mm) (mass %), sand 
(0.05 – 2 mm) (mass %), organic matter content (mass %), calcium carbonate content (mass %), pHH2O, soluble salt content (mass %). 
 


